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Effective spatial domain decomposition for discrete ordinate (Sn) neutron 
transport calculations has been critical for exploiting massively parallel 
architectures typified by the ASCI White computer at Lawrence Livermore 
National Laboratory. A combination of geometrical and computational 
constraints has posed a unique challenge as problems have been scaled up 
to several thousand processors. Carefully scripted decomposition and 
corresponding execution algorithms have been developed to handle a 
range of geometrical and hardware configurations. 

 
Introduction 
The AMTRAN code has been in development at Lawrence Livermore National 
Laboratory  since 1995 to solve two- and three-dimensional deterministic neutron 
transport problems on a range of platforms from serial to massively parallel. When the 
White computer was delivered to Livermore several years ago as part of the U.S. 
Department of Energy’s Advanced Simulation and Computing Program, there was a 
concerted effort to adapt various physics codes to exploit its thousands of parallel 
processors and its threaded, message-passing software environment (IBM, 2000). 
AMTRAN, in particular, has been able to exploit parallelism in several ways, but spatial 
domain decomposition has been the most challenging of these, and ultimately the key to 
the successful and efficient scaling of problems up to thousands of processors. 

At the time it began development in 1995, AMTRAN was unique in its application of  
adaptive mesh refinement technology (AMR) to the solution of the neutron transport 
equation, although other efforts began appearing in conference proceedings shortly 
thereafter (Sjoden et al., 1996) (Aussourd, 1997).  Two basic methodologies have 
developed concerning the type of AMR used:  zone-based (or tree-based) AMR and 
block-based (or patch-based) AMR (Berger et al., 1989).  In zone-based AMR, 
refinement can occur zone by zone, giving greater flexibility in capturing interfaces and 
gradients with finer zoning, but it does not lend itself to large scale spatial parallelism and 
can be less cache friendly because of the irregular data layout (Aussourd, 2003).  
AMTRAN uses a block based AMR, which can result in more total zones than a zone 
based AMR scheme, but is better suited for large-scale parallelism.  AMTRAN blocks 
are rectangles in 2D, or hexahedral boxes in 3D.  Zoning changes are confined to the 
interfaces between blocks; thus, the zoning within a block is uniform and can be very 
computationally efficient. Examples of some zoning rules for AMTRAN are illustrated in 
Figs. 1 and 2. Despite the block AMR structure of AMTRAN, though, the downwind 
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dependency of the Sn directional sweeps still presents a significant challenge in obtaining 
good spatial parallel efficiency.   
 
 
   Block boundary 
 
 
 
 
 
 
 

 Figure 1. Block boundaries must line     Figure 2. Zoning changes can be  
          up on coarsest grid lines          1→2n , where n is arbitrary 
 
Here we will touch only superficially on those aspects of deterministic neutron transport 
which have an impact on considerations of computational parallelism and spatial domain 
decomposition. AMTRAN solves the time-independent transport equation (Eq.1 below), 
where m

g
! is the angular flux for energy group g, and angle m.   
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The total cross section is represented by
tot

! , and )(!S is the source term representing 
contributions from other angles and energy groups through scattering as well as fission 
sources.  )(!S is typically only a function of the scalar flux, defined as a weighted sum of 
the angular fluxes, and its moments.  The transport problem is computed on a Cartesian 
finite-element grid. It consists of one or more uniform blocks.  The zoning in each block 
is determined by the properties of the physical system being modeled (in particular, to an 
approximation of the local mean free path of the neutrons through the medium). The 
neutron transport equations are then solved iteratively until the degree of convergence 
specified by the user is reached. That is the broadest explanation possible to describe the 
essence of the method. Two immediate sources of parallelism lie in the fact that (1) the 
time-independent transport equation (Eq. 1) is solved using a set of coupled single-energy 
group transport equations, each of which can be solved in parallel, subject to 
synchronization points where the coupling terms are calculated, and (2) that the transport 
equation is further discretized into angles, each of which may likewise be computed 
independently.  In our implementation the energy groups (typically 6 to 48) are 
distributed among the processors, and the angles are distributed among the threads (each 
of which is here supported by a separate processor sharing a common memory space). 
These two strategies permit a degree of parallelism equal to the number of energy groups 
multiplied by the number of computational threads. For practical reasons, threading is 
limited to the number of angles per octant, or quadrant in 2D (typically 3 to 16), and also 
by the hardware (typically 2 to 16 processors on a shared memory node).  Any further 
parallelism to be achieved beyond this point requires spatial domain decomposition, and 
that leads us into the heart of our discussion. 
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As is typically done in cases of domain decomposition, computation proceeds in parallel 
for each region while being punctuated by occasional exchanges of information among 
the processors. In AMTRAN’s case, each iteration consists of sub-iterations separated by 
a computational barrier and exchange of messages among the processors. Exchange is 
necessary only between pairs of processors which share a common border corresponding 
to the physical space being modeled. In particular, the messages consist of information 
describing the physical variables being computed in each region. Since the calculation is 
relatively static from one iteration to the next, the size and content of the messages is 
predetermined by the spatial domain decomposition performed initially. However, as we 
shall see, we may permit the subdomain boundaries to shift dynamically between 
iterations if load imbalances are detected during the computation.  
 
Basic Definitions 
At this point we need to introduce some definitions that will be used throughout the 
remainder of the discussion. We have already used the term “subdomain” in the 
preceding paragraphs. To be more precise, a subdomain consists of one or more 
contiguous blocks or grids which fill a space corresponding to a rectangle (in two 
dimensions) or hexahedral box (in three dimensions), that is, a subset of the original 
problem space. In Fig. 3 we have a very simplistic example of four subdomains, where 
solid lines denote subdomain boundaries, thick dashed lines denote grid boundaries 
within subdomains, and thin dashed lines separate individual zones within a grid. In this 
example subdomain 1 contains the single grid A, subdomain 2 contains grid B, 
subdomain 3 contains the three grids C, D and E, and subdomain 4 contains grids F and 
G. (Typically grids contain hundreds or thousands of zones.) 
 
  
                                 A       B 
 
            
                    
 
 
           C   D       F           G 
 
 
                               E 
 
 
 

  Figure 3. Example of four subdomains with seven grids 
 
In our terminology a “subdomain master” is a collection of one or more subdomains that 
are assigned to a given processor. In addition, if a master contains more than one 
subdomain, then we speak of this as an example of “subdomain overloading.” These 
subdomains may or may not be contiguous, so that a subdomain master may represent 

←2 
(B) 

←4 
(F,G) 

1→ 
(A) 

3→ 
(C,D,E) 
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space physically distributed throughout the problem (namely, as a collection of rectangles 
or hexahedral boxes). Thus subdomains are individually physically coherent (in terms of 
the object being modeled), whereas master subdomains are logically coherent. The only 
physical coherence that the latter need possess is the fact that they reside in adjacent 
computer memory. Returning to the example of Fig. 3, we could place subdomains 1 and 
4 under a single master, and leave subdomains 2 and 3 each under a separate master. 
 
Note again that a subdomain corresponds purely to a single physical space. This means that 
even though each subdomain is replicated across multiple processors (each corresponding 
to one or more separate energy groups), it is never split between processors. In summary, 
sets of processors are partitioned among subdomain masters and, within a subdomain 
master set, processors are partitioned by energy group. Each member of the set models the 
same physical space and therefore behaves quite similarly in terms of the computations it 
performs and the structure of the messages it sends and receives. The term “master” arises 
from the fact that one designated processor performs certain collection and messaging 
functions both within the set (such as with all-reduce functions) and then later with the 
other sets. We can use the example in Fig. 3 to illustrate how subdomains, grids, and 
energy groups could be allocated among processors. Let us say that there are four energy 
groups (a)-(d), with two each assigned to a processor. Table 1 gives the assignments 
assuming, as we did above, that subdomains 1 and 4 belong to a single master. 

Table 1. Example of subdomain-to-processor assignment 
 

Processor Master Subdomains Grids Energy 
groups 

1 1,4 A,F,G a,b 
2 

1 
1,4 A,F,G c,d  

3 2 B a,b 
4 2 2 B c,d 
5 3 C,D,E a,b 
6 3 3 C,D,E c,d 

 
 
A final bit of terminology is crucial to our discussion and needs special attention. This 
concerns the discretized angles mentioned above and the order of computations. Eq. 1 is 
solved through “source iteration” in which the RHS source term is evaluated using “old” 
values of the fluxes; usually those from the previous iteration.  The streaming term on the 
LHS is then solved by sweeping through the mesh in the direction of neutron flow, given 
by the direction of angle m.  In two dimensions the sweep angles can be assigned to one of 
four groups based upon the direction of the sweep from one of the four corners of the 
problem to the corresponding opposite corner (that is, lower left to upper right, lower right 
to upper left, upper left to lower right, or upper right to lower left). Each one of these 
sweeps is independent of the others and so they can be done in parallel. However, within a 
single sweep, all the grids must be swept with certain dependency rules that govern the 
sequence of processing of grids in going from the grid at one corner and ending with the 
grid in the opposite corner. We will use the sweep direction from lower left to upper right 
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to illustrate the order of computation between these two extremes. The basic rule is that 
each boundary on the bottom or left of a subdomain must either be an exterior boundary, or 
else be adjacent only to subdomains that have already been swept. All four sets of sweep 
dependencies corresponding to the example of Fig. 3 are given in Fig. 4. It should be noted 
from the diagrams that dependencies for sweeps (a) and (d), which proceed in opposite 
directions, are in fact inverses of one another, which can be seen by reversing the direction 
of the arrows. The same holds for cases (b) and (c) and illustrates that dependencies for 
sweeps in opposite directions are always inverses of one another. 
 
 

        A         B     
                  B       A     
                  G 
        C                          F 
                  D              D     
         E                         E 
                         F          G   C         

         (a) upper left to lower right                          (b) upper right to lower left 
 
                         B    A 
    G               B 
   A      
         F    C 
        D              D 
         E    E 
             C              F           G 
         (c) lower left to upper right                          (d) lower right to upper left 

    Figure 4. Example of sweep dependencies for seven grids in four subdomains 
 
In three dimensions we have the analogous situation with regard to sweeps, except that 
all angles fall into one of eight octants to begin their sweep, starting from the outermost 
corner of the octant and ending in the opposite corner of the problem. Now in order for a 
subdomain to be swept (i.e., the upwind sides) it must have the three sides facing the 
sweep corner either lying on one of the external boundary planes of the problem or else 
adjacent only to subdomains previously swept from the same direction. Examples below 
will illustrate these dependency rules. 
 

Motivation by Example for the Decomposition Method  
We now turn to the problem of how sweeps are actually performed on each processor 
once we have partitioned the problem among subdomains, assigned these to masters, and 
performed adaptive mesh refinement to generate the grids on which the computation will 
be performed. This will illustrate how critically the computational process depends on 
both the initial partitioning of the problem, and on how we choose among the various 
possible ways of scheduling the potentially parallel subtasks assigned to a given 
processor. Later we will give solutions that address all these concerns.  
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Let us use our previous example from Fig. 3, but unlike the case of Table 1, each 
subdomain will have a separate master, so that there will be eight processors in total 
instead of six. (This assignment to masters has no effect on the dependency diagrams of 
Fig. 4.) We will also assume that the total work to be performed in each subdomain is 
equal, that is, that they are perfectly load balanced in terms the amount of computation 
which they must perform. A simple strategy is for each processor to perform all sweeps 
possible for a given sub-iteration, then exchange messages as necessary, and proceed to the 
next sub-iteration until all sweeps have been performed in all directions on all processors. 
(Recall that messaging must occur in order to pass information across grid boundaries.)  
 
Referring to the dependency diagrams of Fig. 4, we see that on the first sub-iteration grid 
A can be swept in subdomain 1 from the upper left, grid B in subdomain 2 from the upper 
right, grids C, then E, then D in subdomain 3 from the lower left, and finally grids G and 
then F in subdomain 4 from the lower right. At this point nothing else can be done until 
the processors have exchanged messages. The second sub-iteration is not quite so 
straightforward. Grid A in subdomain 1 can now be swept both from the lower left and 
from the upper right. However, grid B in subdomain 2 can be swept only from the upper 
left. (It cannot be swept from the lower right because grid D has not yet been swept in 
that direction.) Likewise, only grid C in subdomain 3 can be swept from the upper left, 
whereas E, then D, and then C can all be swept from the lower right. In subdomain 4, grid 
G and then F can be swept from the upper right, and in the opposite order from the lower 
left. These and the remaining sub-iterations giving the complete set of sweeps for a single 
iteration are listed in Table 2. We have assigned arbitrary time units to each grid so that 
the total for each subdomain is one unit. 

Table 2. Order of computations for the greedy algorithm 
 

Processors 
and 

Subdomains→ 

Processors 1 and 2 
Subdomain 1 

Processors 3 and 4 
Subdomain 2 

Processors 5 and 6 
Subdomain 3 

Processors 7 and 8 
Subdomain 4 

Grid  Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time 
Sub-iteration     

C .25 G .50 
E .25 F 

lr→ul 
.50 

 
1 

 
A 

 
ul→lr 

 
1.00 

 
B 

 
ur→ll 

 
1.00 

D 

 
 ll→ur 

.50  
C ul→lr .25 F .50 

A ur→ll 1.00 E .25 G 
ll→ur 

.50 
D .50 G .50 

 

2 
A  ll→ur 1.00 

 

B 

 

ul→lr 

 

1.00 

C 

 
lr→ul 

.25 F 
ur→ll 

.50 
D .50 

B lr→ul 1.00 E 
  ur→ll 

.25 
D .50 

 

3 

 

(idle) 
 B   ll→ur 1.00 E 

ul→lr 
.25 

 

(idle) 

F .50 
4 A lr→ul 1.00 (idle) C   ur→ll .25 G 

ul→lr 
.50 

Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right 
 
It is clear from a glance at Table 2 that the strategy of doing all computation possible on 
every sub-iteration is far from optimal. First we see that different processors do 
comparable work only in the first sub-iteration. After that we find great asymmetry and 
idled processors. In order to quantify this imbalance we can take the maximum time for 
any processor on a sub-iteration as the time required to complete that sub-iteration across 
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all processors (at which point they exchange messages). What we see from the table is 
that the four sub-iterations take (1, 2, 2, 1) time units, respectively. This gives an overall 
time of 6 units (where we ignore communication time among the processors). Let us now 
take another approach and show how we can obtain far different efficiencies by a 
different scheduling of computations for the same problem. Table 3 gives the result. 

Table 3. Order of computations for optimized strategy 
Processors 

and 
Subdomains→ 

Processors 1 and 2 
Subdomain 1 

Processors 3 and 4 
Subdomain 2 

Processors 5 and 6 
Subdomain 3 

Processors 7 and 8 
Subdomain 4 

Grid  Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time 
Sub-iteration     

C .25 G .50 
E .25 F 

lr→ul 
.50 

 
1 

 
A 

 
ul→lr 

 
1.00 

 
B 

 
ur→ll 

 
1.00 

D 

 
 ll→ur 

.50  
E .25 F .50 
D .50 G 

ll→ur 
.50 

 
2 

 
A 

 
ur→ll  

 
1.00 

 
B 

 
ul→lr 

 
1.00 

C 

 
lr→ul 

.25  
C .25  G .50 
D .50  F 

ur→ll 
.50 

 
3 

 
A 

 
ll→ur 

  
  1.00 

 
B 

 
lr→ul 

 
1.00 

E 

 
ul→lr 

.25  
D .50 F .50 
E .25 G 

ul→lr 
.50 

 
4 

 
A 

 
lr→ul 

   
   1.00 

 
B 

  
ll→ur 

 
1.00 

C 

   
ur→ll 

.25  
Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right 

Now we find a completely different situation in comparison with Table 2. We see in 
particular that each processor does one unit of work on each sub-iteration. Thus the 
overall time has been reduced from 6 units to 4 for the complete iteration, a savings of 
50%. Furthermore we see that all the grids of a subdomain are swept in each sub-
iteration, a situation that does not always hold in Table 2. This was possible because (1) 
we had precisely four subdomains, (2) the space was partitioned equally among the 
subdomains in advance, and (3) there existed dependency relationships among the 
subdomains that permitted this unique distribution of effort among the sub-iterations. 
Note that by sweeping all the grids in a subdomain in only one direction per sub-iteration, 
we need not be concerned about the internal structure of the subdomain, but can treat 
each subdomain as essentially one super-grid. Then our precedence rules (such as those 
illustrated in Fig. 4) become greatly simplified. (There is a practical consideration here as 
well, in that we must perform the domain decomposition before the stage of adaptive 
mesh refinement is begun. This means that we do not know where the grid boundaries 
will lie at the time of the decomposition. Thus we wish to avoid coupling the internal grid 
structure of the subdomains to our decomposition strategy.) 

The approach described above forms one of the cornerstones of AMTRAN’s domain 
decomposition strategy, which covers not only the simplest possible case examined in the 
preceding paragraphs, but up to 512 subdomains in three dimensions. In order to 
accomplish this task AMTRAN internally maintains tables which drive the domain 
decomposition procedure on problem initialization, and additional corresponding tables 
of scripts for deciding which angles to sweep on each sub-iteration as well. Each handles 
a fixed number of subdomains (as requested by the code user) in either two or three 
dimensions. This strict regime reduces the number of possible cases that we need to 
analyze and guarantees uniformity of behavior within the code.  
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Outline of the Decomposition Algorithm 
We have now provided the motivation for our spatial decomposition strategy, which we 
now give in greater detail and generality. We have found it useful so far to support 4, 8, 
or 16 subdomains in two dimensions, and 8, 16, 32, 64, 128, 256, or 512 subdomains in 
three. The reason that we support only powers of two in this way is that they permit the 
most efficient exploitation of the parallel computational environment available to us. Our 
partition algorithm is simple and rigid. We make a fixed number of binary partitions 
along one axis, then for each subdivided region we make binary partitions along a second 
axis, and then in the case of three dimensions along the remaining axis. A weighting 
scheme that estimates the amount of work to be performed in each part of the problem is 
the driver behind the initial set of partitions. (As stated earlier, we can later rebalance the 
problem dynamically stepwise after each partition in case the initial approximation is not 
adequate in terms of load balance.) The choice of which Cartesian axis is used in each set 
of partitions depends upon the presence or absence of symmetry planes along each axis 
and is beyond the scope of this discussion. Table 4 gives the binary decomposition 
specifications that AMTRAN uses for each configuration of subdomains. 

Table 4. Order and degree of partitioning according to number of subdomains 
Number of 
Dimensions 

Number of 
Subdomains 

Number of Regions Partitioned along 
Axis 1            Axis 2          Axis 3 

2 4 2 2  
2 8 2 4  
2 16 4 4  
3 8 2 2 2 
3 16 2 2 4 
3 32 2 4 4 
3 64 4 4 4 
3 128 8 4 4 
3 256 8 8 4 
3 512 8 8 8 

With the binary partition scheme above we can now name our subdomains by their 
coordinates along each partition axis, and dispense with the individual numbers used 
earlier. By way of illustration, the sample problem of Fig. 3 was partitioned first along 
the y-axis into what will become subdomains 1 and 2 on top and subdomains 3 and 4 on 
the bottom. Then we separately partition the upper subdomain into 1 and 2 and the lower 
into 3 and 4. So in the new subdomain coordinate numbering system subdomain 1 
becomes subdomain (1,1), subdomain 2 becomes subdomain (1,2), subdomain 3 becomes 
subdomain (2,1), and finally subdomain 4 becomes subdomain (2,2). We will use this 
latter numbering in the remainder of our examples. 
We now want to formalize our criteria for sweeping subdomains monolithically as in 
Table 3 above. Note there that in the first two sub-iterations, the upper two subdomains 
exchanged sweep directions, and the lower two did likewise. Then in the last two sub-
iterations, the upper two subdomains swapped the pattern of the first two sub-iterations 
with the lower two subdomains. This is in fact the only pattern of sweeps which can give 
the optimal performance and illustrates the fact that sweeps directions are exchanged 
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among subdomains according to the inverse order of partitioning. We can alternatively 
view this as exchange first between nearest neighbors on the binary partition tree, then 
among progressively more distant branches on that tree. (We will expand on this topic 
with more examples in the next section.) The second criterion for monolithic sweeping of 
subdomains, as we have already mentioned in earlier discussion, is to sweep only in one 
“direction” per subdomain per sub-iteration, where “direction” in our terminology means 
all angles lying in a given octant (or quadrant in 2D). We can now introduce the third and 
final criterion, which we will call the “adjacency” criterion. This is that subdomains 
which share a common boundary can have subdomain coordinates which differ by no 
more than one in any axis. It guarantees that the prerequisite sweeps have already been 
performed for each subdomain’s neighbors in time for it to perform its own sweeps. In 
Fig. 5 we contrast decompositions which both pass and fail this criterion. In the one on 
the left adjacent subdomains have coordinates which differ by no more that one in either 
axis, whereas on the right we have shifted the partitions slightly. Now subdomain (2,1) 
shares a boundary with subdomain (1,3), and subdomain (4,2) shares a boundary with 
subdomain (3,4). In both cases the second coordinates differ by two, violating the 
adjacency criterion. 
 

  
        (4,1)       (4,2)    (4,3)    (4,4)       (4,1)             (4,2)        (4,3) (4,4) 

   
        (3,1)    (3,2)      (3,3)        (3,4)                       (3,1)     (3,2)     (3,3)        (3,4) 

   

             (2,1)         (2,2)    (2,3)    (2,4)                        (2,1)         (2,2)     (2,3)    (2,4) 

   
      (1,1)   (1,2)      (1,3)           (1,4)                    (1,1) (1,2)        (1,3)            (1,4) 

         passes adjacency criterion                     fails adjacency criterion 

               Figure 5. A comparison of subdomain adjacency in two decompositions 
Before we go into more detail on sweeps and their relationship to domain partitioning, it 
will be useful to introduce some additional notation. 

Representing Sweeps and Sweep Directions 
We will now introduce a numerical notation for sweep directions and introduce three-
dimensional sweeps. Table 5 gives the correspondence. We can use the numerical sweep 
direction values in a schematic representation of sweeps in a diagram representing those 
for 16 subdomains in a four-by-four two-dimensional problem. Fig. 6 shows how we 
might give a more abstract representation of a problem such as that shown in Fig. 5. We 
do not assume in Fig. 6 that all the subdomain boundaries necessarily align, but merely 
want a general representation for all four-by-four problems that satisfy our sweep criteria 
of section 4 above. Ten sub-iterations are represented. 

Referring back to Fig. 5, we can see why the adjacency criterion must hold in order for 
the pattern of Fig. 6 to work. For the set of subdomains on the right side of Fig. 5 we are 
blocked at sub-iteration 3 from performing the sweep in the 0 direction for subdomain 
(2,1). This is because subdomain (1,3) needs to have already been swept in direction 0 
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(and not merely be in the process of being swept as shown in the pattern) for (2,1) to be 
swept at sub-iteration 3. For the set of subdomains on the left side of Fig. 5, the sweep 
patterns of Fig. 6 work properly as expected. 

Table 5. Numerical representation of sweep directions 

Sweep 
Direction 

Number of  
Dimensions Interpretation 

0 2  lower left to upper right 
1 2  lower right to upper left 
2 2  upper left to lower right 
3 2  upper right to lower left 
   

0 3  lower left front to upper right back 
1 3  lower right front to upper left back 
2 3  lower left back to upper right front 
3 3  lower right back to upper left front 
4 3  upper left front to lower right back 
5 3  upper right front to lower left back 
6 3  upper left back to lower right front 
7 3  upper right back to lower left front 

 
 

 
          2                   3                           2     3                         3      2               3                    2               

           2                    3                2     3     0     3     2     1 

           0                    1               0     1                    2     1     0     3 

          0              1          0     1                      1      0              1                    0  

          Sub-iteration 1  Sub-iteration 2       Sub-iteration 3              Sub-iteration 4   Sub-iteration 5 
 

                            0     1                   0      1                      1     0     1       0 

          3     0     1     2                         1     0                           1                    0     

          1     2     3     0               3     2           3           2 
                   2                    3                2      3     3     2     3        2 

         Sub-iteration 6                  Sub-iteration 7       Sub-iteration 8              Sub-iteration 9  Sub-iteration 10 

 
Figure 6. Sweep pattern for 16 subdomains in two dimensions 

 
Let us now consider some efficiency issues concerning the sweep patterns of Fig. 6. We 
notice that each subdomain is swept only four times out of ten sub-iterations for an 
efficiency rate of only 40%. However, we can double the efficiency to 80% by noticing 
that subdomains separated by two units vertically are never both swept in the same sub-
iteration. So we can perform subdomain overloading and place these pairs of subdomains 
on single masters. For example, subdomains (1,1) and (3,1) are paired together, (2,1) and 
(4,1) are paired together, and so on. Thus master 1 will be busy with subdomain (1,1) in 
sub-iteration 1, subdomain (3,1) in sub-iteration 3, subdomain (1,1) again in sub-iteration 
4 again, and so forth. We will find subdomain overloading to be essential to achieving 
maximal efficiencies as we move toward higher numbers of subdomains as well. Note 
that 100% theoretical efficiencies are possible only for four subdomains in two 
dimensions and eight subdomains in three dimensions because otherwise (with more 
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subdomains than sweep directions) at least the initial and final sub-iterations must 
necessarily idle some processors. 

In order to represent sweep patterns more compactly, we can use a chart form as shown 
in Table 6. It gives the sweep pattern of Fig. 6 both without and with subdomain 
overloading. 

Table 6. Sweep directions for a 4×4 set of subdomains 
 
Master Subdomain Sub-iteration Master Subdomains Sub-iteration 

(without subdomain overloading) (with subdomain overloading) 
  1 2 3 4 5 6 7 8 9 10   1 2 3 4 5 6 7 8 9 10 
  Sweep Directions   Sweep Directions 
1 (1,1) 0   1   2   3 1 (1,1),(3,1) 0  2 1 0 3 2 1  3 
2 (1,2)  0 1     2 3  2 (1,2),(3,2)  0 1 2 3 0 1 2 3  
3 (1,3)  1 0     3 2  3 (1,3),(3,3)  1 0 3 2 1 0 3 2  
4 (1,4) 1   0   3   2 4 (1,4),(3,4) 1  3 0 1 2 3 0  2 
5 (2,1)   0  2 1  3   5 (2,1),(4,1) 2  0 3 2 1 0 3  1 
6 (2,2)    0 1 2 3    6 (2,2),(4,2)  2 3 0 1 2 3 0 1  
7 (2,3)    1 0 3 2    7 (2,3),(4,3)  3 2 1 0 3 2 1 0  
8 (2,4)   1  3 0  2   8 (2,4),(4,4) 3  1 2 3 0 1 2  0 
9 (3,1)   2  0 3  1               

10 (3,2)    2 3 0 1                
11 (3,3)    3 2 1 0                
12 (3,4)   3  1 2  0               
13 (4,1) 2   3   0   1             
14 (4,2)  2 3     0 1              
15 (4,3)  3 2     1 0              
16 (4,4) 3   2   1   0             

We can use this same technique of overloading for our first three-dimensional example, 
namely, a 4×4×2 array of subdomains. The problem will consist of two layers, each 
swept in much the same fashion as above. The schematic view of the first sub-iteration is 
shown in Fig. 7, where heavy arrows are used to denote sweep directions.  In addition, 
some of the subdomains at the corners of the block have been labeled in order to show 
their numbering scheme. The complete set of sweeps is given in numerical notation in 
Table 7. Note that now each subdomain must be swept eight times instead of four times 
as in the two-dimensional examples which preceded this one. This increases the number 
of sub-iterations from 10 to 18. We have also shaded the upper left quadrant to highlight 
where the pattern in the upper right of Table 6 has been replicated four times in Table 7. 
        (2,4,1)            (2,4,4) 

 

 

            (2,1,1) 

                 (1,4,4) 

 

 

 

            (1,1,1)     (1,1,4) 

 

Figure 7. Schematic view of 32 subdomains in a 4×4×2 configuration 
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Table 7. Sweep directions for a 4×4×2 set of subdomains on 16 masters 
 

Master Subdomains Sub-iteration 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
  Sweep Directions 
1 (1,1,1),(1,3,1) 0  2 1 0 3 2 1 4 3 6 5 4 7 6 5  7 
2 (1,1,2),(1,3,2)  0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7  
3 (1,1,3),(1,3,3)  1 0 3 2 1 0 3 2 5 4 7 6 5 4 7 6  
4 (1,1,4),(1,3,4) 1  3 0 1 2 3 0 5 2 7 4 5 6 7 4  6 
5 (1,2,1),(1,4,1) 2  0 3 2 1 0 3 6 1 4 7 6 5 4 7  5 
6 (1,2,2),(1,4,2)  2 3 0 1 2 3 0 1 6 7 4 5 6 7 4 5  
7 (1,2,3),(1,4,3)  3 2 1 0 3 2 1 0 7 6 5 4 7 6 5 4  
8 (1,2,4),(1,4,4) 3  1 2 3 0 1 2 7 0 5 6 7 4 5 6  4 
9 (2,1,1),(2,3,1) 4  6 5 4 7 6 5 0 7 2 1 0 3 2 1  3 

10 (2,1,2),(2,3,2)  4 5 6 7 4 5 6 7 0 1 2 3 0 1 2 3  
11 (2,1,3),(2,3,3)  5 4 7 6 5 4 7 6 1 0 3 2 1 0 3 2  
12 (2,1,4),(2,3,4) 5  7 4 5 6 7 4 1 6 3 0 1 2 3 0  2 
13 (2,2,1),(2,4,1) 6  4 7 6 5 4 7 2 5 0 3 2 1 0 3  1 
14 (2,2,2),(2,4,2)  6 7 4 5 6 7 4 5 2 3 0 1 2 3 0 1  
15 (2,2,3),(2,4,3)  7 6 5 4 7 6 5 4 3 2 1 0 3 2 1 0  
16 (2,2,4),(2,4,4) 7  5 6 7 4 5 6 3 4 1 2 3 0 1 2  0 

 
We now wish to expand our scheme for subdomain overloading to larger numbers of 
subdomains. In order to do this we need to examine more carefully the shaded sweep 
pattern at the left of Table 6. When we compare it to the shaded pattern in Table 7, we 
can see that the upper and lower halves of the former pattern have been merged by 
overlaying one half on top of the other. Furthermore, to the right of the shaded pattern in 
Table 7 we have placed the same pattern (the unshaded cells with italicized numerals) in 
an interlocking fashion with the shaded area. This illustrates an interesting property of the 
pattern that relates to tiling theory, namely, that the shaded pattern of Table 6 can 
completely tile the plane if displaced in (positive or negative) multiples of 8 units in the 
vertical and (positive or negative) multiples of 8 in the horizontal direction. That is, 
copies of the pattern, if treated like the pieces of a jigsaw puzzle, can be placed together 
to cover a planar surface infinitely in all directions. This replication scheme works not 
only for modeling the sweeps of our 16 and 32 subdomain configurations, as already 
shown, but for overloading higher numbers of subdomains onto sixteen masters as well. 
For example, in order to place 64 subdomains on 16 masters we replicate the sweeps of 
Table 6 to the right, overlaying the copy of sub-iterations 1 and 2 on sub-iterations 17 and 
18, respectively, for a new total of 34=2×18-2 sub-iterations. Master 1 would have 
subdomains {(1,1,1),(1,3,1),(3,1,1),(3,3,1)} and master 9 would have 
{(2,1,1),(2,3,1),(4,1,1),(4,3,1)}, for example. We could similarly replicate patterns to go 
to 128 or 256 subdomains. 
 
Efficiency Comparisons for Various Subdomain Configurations 
We can now summarize the various configurations of subdomains and masters that we 
studied in the previous section. Table 8 contains these results, plus some that were not 
covered earlier. Again, these are theoretical results assuming perfect load balancing and 
no overhead or communications cost. It is clear from this table that subdomain 
overloading is preferable whenever we have more than 4 subdomains in two dimensions 
or 8 subdomains in three. The asymptotic effect of overloading subdomains on masters is 
apparent also in going from 1 to 2 to 4 to 8 subdomains per master on 16 subdomains 
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(with efficiencies of 80, 89, 94, and 97 percent respectively). On 32 masters the same 
overloading produces efficiencies of 57, 73, 84, and 91 percent, respectively. Likewise, 
for 64 masters we have efficiencies of 36, 61, 76, and 86 percent, respectively. This is 
shown graphically in Fig. 8. 

Table 8. Theoretical efficiency results for various configurations of subdomains 

Dimensions Masters Subdomains Subdomains 
per 

Master 

Active 
Sub-iterations 

Total  
Sub-iterations 

Percent 
Efficiency 

2 4 4 1 4 4 100 

2 8 8 1 4 6 67 
2 8 16 2 8 10 80 

2 16 16 1 4 10 40 
 

3 8 8 1 8 8 100 

3 16 16 1 8 10 80 
3 16 32 2 16 18 89 

3 16 64 4 32 34 94 
3 16 128 8 64 66 97 
3 16 256 16 128 130 98 
3 16 512 32 256 258 99 
3 32 32 1 8 14 57 

3 32 64 2 16 22 73 
3 32 128 4 32 38 84 

3 32 256 8 64 70 91 
3 32 512 16 128 134 96 
3 64 64 1 8 22 36 
3 64 128 2 16 26 61 

3 64 256 4 32 42 76 
3 64 512 8 64 74 86 
3 128 512 4 32 50 64 
3 128 1024 8 64 82 78 
3 128 2048 16 128 146 88 
3 128 4096 32 256 274 93 

 
The important observation to be made from Fig. 8 is that for both 16 and 32 masters we 
can adequately exploit our computational resources by subdomain overloading (with 
progressively larger numbers of subdomains). Note that it is the number of masters, 
rather that the number of subdomains, that determines the degree of parallelism overall, 
so that all data points along a single curve represent the same level. As an example with, 
say 32 energy groups, 1024 processors can be used with 32 masters.  Although 64 
masters allow for somewhat less exploitation of our resources, as can be seen from 
Table8 and Fig. 8, they permit us to use up to 2048 processors (again with 32 energy 
groups). The optional use of threading increases these figures even more. The last entry 
in Table 8 corresponds to a 16×16×16 decomposition of the problem space into 4096 
subdomains, with 32 subdomains on each of 128 masters. With 32 energy groups and 4-
way threading, we would use 16384 processors, a capacity to be reached within a few 
years. 
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Maximum theoretical processor usage for various subdomain configurations
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Figure 8. Graphical rendering of comparisons in Table 8 

 
Actual timing figures for the above configurations agree fairly well with the predicted 
efficiencies, except that there is some degradation of performance with higher numbers of 
subdomains due to the inevitable overhead and communication costs. Nevertheless, we 
are able to exploit the massively parallel hardware rather well, and scaling studies have 
showed improved overall performance as problems are progressively doubled in size to 
eight times their original size. At 32 masters and 3000 processors we have not yet found 
in practice the point where scaling up a problem becomes counterproductive. Our 
principal limitation at the moment is the availability of computing nodes rather than our 
ability to exploit them effectively.  
 
An example illustrating the effectiveness of subdomain overloading is given in Table 9 
below. It shows that the theoretical efficiencies of Table 8 for 16 masters are in fact 
achieved in practice. This is an S8 problem with 32 energy groups. It has fourfold 
symmetry about one axis, and thus is a good candidate for load balancing. We see from 
Table 9 that the product of the time and predicted theoretical efficiency is nearly constant 
as expected, and corresponds to a computation time of approximately 1200 seconds in the 
limiting case of 100% efficiency. In problems with no such symmetry, perfect load 
balancing is more difficult to achieve, and we can find that overall times remain nearly 
constant in spite of increasing theoretical efficiency. Moreover, if we attempt load 
balancing with too crude an overall mesh (thus resulting in few choices as to where to 
place partitions during the decomposition phase), then resorting to larger numbers of 
subdomains can be counterproductive. It follows that the opportunities for finer 
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decomposition (and hence greater parallelism) occur when we model our problems with 
more and finer grids overall. 

Table 9. Timing study for subdomain overloading efficiencies 
 

Number of 
masters 

Number of 
subdomains 

Time (seconds) Theoretical 
efficiency 

 Efficiency × time 

16 16 1440* .80 1150 
16 32 1330* .89 1184 
16 64 1272* .94 1196 

* Due to the AMR nature of the code, slight variations in total zone count occurred between runs so these 
times have been normalized to a constant zone count. 
 
We can now return to a problem to which we alluded earlier in section (4), namely the 
adjacency criterion as exemplified in Fig. 5. It turns out, occasionally, that our initial 
binary spatial decomposition may result in a configuration which fails that criterion. In 
such cases the question arises as to whether it would be better to abandon the scripting of 
sweeps which we developed in section (5) in favor of the greedy algorithm illustrated in 
Table 2, or alternatively to adjust our subdomain boundaries to fit the adjacency criterion 
at the expense of optimal load balancing. In fact, studies have been performed to find out 
how this trade-off could affect overall performance. The result is that satisfying the 
adjacency criterion is more important than optimizing the balance of work among the 
processors.  
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